پیشبینی بازارها از جمله سهام به دلیل حجم بالای معاملات و نقدینگی برای محققان و سرمایهگذاران دارای جذابیت بوده است. توانایی پیشبینی جهت قیمت ما را قادر میسازد با کاهش ریسک و اجتناب از ضرر و زیان مالی، به بازده بالاتری دستیابیم. اخبار نقش مهمی در فرایند ارزیابی قیمت چکیده کامل
پیشبینی بازارها از جمله سهام به دلیل حجم بالای معاملات و نقدینگی برای محققان و سرمایهگذاران دارای جذابیت بوده است. توانایی پیشبینی جهت قیمت ما را قادر میسازد با کاهش ریسک و اجتناب از ضرر و زیان مالی، به بازده بالاتری دستیابیم. اخبار نقش مهمی در فرایند ارزیابی قیمت فعلی سهام دارد. توسعه روشهای دادهکاوی، هوش محاسباتی و الگوریتمهای یادگیری ماشین سبب ایجاد مدلهای جدیدی در پیشبینی شدهاند. هدف از این پژوهش ذخیره سازی اخبار خبرگزارها و استفاده از روشهای متن کاوی و الگوریتم ماشین بردار پشیبان به منظور پیشبینی جهت قیمت روز آینده سهم است. بدین منظور خبرها منتشر شده در 17 خبرگزاری با استفاده از یک خزگشر موضوعی به زبان پیاچپی ذخیره و دستهبندی شده است. سپس با استفاده از روشهای متنکاوی و الگوریتم ماشین بردار پشتیبان و کرنلهای مختلف به پیشبینی جهت قیمت سهام گروه محصولات شیمیایی در بورس اوراق بهادار پرداخته میشود. دراین مطالعه از 300 هزار خبر در دستههای سیاسی و اقتصادی و قیمتهای سهام 25 شرکت منتخب در بازه زمانی آبان تا اسفند 97 در 122 روز معاملاتی استفاده شده است. نتایج نشان میدهد با مدل ماشین بردار پشتیبان با کرنل خطی میتوان به صورت میانگین 83 درصد جهت قیمتها را پیشبینی کرد. با استفاده از کرنلهای غیرخطی و معادله درجه 2 ماشین بردار پشتیبان صحت پیشبینی به صورت میانگین تا 85 درصد افزایش مییابد و سایر کرنلها نتایج ضعیفتری از خود نشان میدهند.
پرونده مقاله