یادگیری الکترونیکی به عنوان روشی نوین در امر آموزش و یادگیری در طی سالیان اخیر مورد استقبال فراوانی قرار گرفته است. اکثر سامانه های یادگیری الکترونیکی، صرف نظر از تفاوت های فردی یادگیرندگان محتوای آموزشی مشابهی را برای همة یادگیرندگان ارائه می دهند در حالی که در آموزش های مبتنی بر وب، علاوه بر افزایش فرصت یادگیری باید به ارتقای بازدهی یادگیری نیز توجه شود. سامانه های یادگیری تطبیقی برای ارائة محتوای تطبیق پذیر با هر یادگیرنده، نیازمند گروه بندی یادگیرندگان با علایق مشابه است و برای تحقق این هدف، می توان از سبک های یادگیری یادگیرندگان بهره گرفت. گروه-بندی خودکار یادگیرندگان در این محیط به کمک روش های خوشه بندی امکان پذیر است. به دلیل متفاوت بودن نتایج روش های خوشه بندی در تکرارهای مختلف، در این پژوهـش از روش خوشه بندی شورایی برای ترکیـب نـتایج خوشـه بندی پنـج روش FCM، K-means، KNN , SVM و medoids-K برای گروه بندی یادگیرندگان در محیط یادگیری الکترونیکی استفاده شده است. نتایج ارزیابی تجربی روش خوشهبندی پیشنهادی بر اساس سه شاخص «دیویس – بولدین»، « خلوص و تجمع» و « واریانس » نشان میدهد که این روش، کاهش هزینة محاسباتی و دقت و سرعت بیشتری نسبت به سایر روشهای متداول در شناسایی گروهها داشته است.
پرونده مقاله