بهبود سیستم تشخیص نفوذ در اینترنت اشیاء صنعتیِ مبتنی بر یادگیری عمیق با استفاده الگوریتمهای فراابتکاری
محورهای موضوعی : فناوری اطلاعات و ارتباطاتمحمدرضا زراعتکار مقدم 1 * , مجید غیوری ثالث 2
1 - دانشگاه جامع امام حسین(ع)
2 - گروه کامپیوتر دانشگاه جامع امام حسین (ع)،
کلید واژه: سیستم تشخیص نفوذ, اینترنت اشیاء صنعتی, الگوریتمهای فراابتکاری, شبکه عصبی,
چکیده مقاله :
با توجه به گسترش روز افزون استفاده از سامانههای اینترنتاشیاء صنعتی یکی از پرکابردترین مکانیزمهای امنیتی، سیستمهای تشخیص نفوذ در اینترنتاشیاء صنعتی میباشد. در این سیستمها از تکنیکهای یادگیری عمیق بهطور فزآیندهای برای شناسایی حملات، ناهنجاریها یا نفوذ استفاده میشود. در یادگیری عمیق مهمترین چالش برای آموزش شبکههای عصبی، تعیین فراپارامترهای اولیه در این شبکهها است. ما برای غلبه بر این چالش، به ارائهی رویکردی ترکیبی برای خودکارسازی تنظیم فراپارامتر در معماری یادگیری عمیق با حذف عامل انسانی پرداختهایم. در این مقاله یک سیستم تشخیص نفوذ در اینترنتاشیاء صنعتی مبتنی بر شبکههای عصبی کانولوشن (CNN) و شبکه عصبی بازگشتی مبتنی بر حافظه کوتاه مدت (LSTM) با استفاده از الگوریتمهای فراابتکاری بهینهسازی ازدحام ذرات (PSO) و وال (WOA) ارائه شده است. این سیستم یک روش ترکیبی براساس شبکههای عصبی و الگوریتمهای فراابتکاری برای بهبود عملکرد شبکه عصبی در راستای افزایش نرخ تشخیص و کاهش زمان آموزش شبکههای عصبی میباشد. در روش ما با درنظر گرفتن الگوریتم PSO-WOA، فراپارامترهای شبکه عصبی بدون دخالت عامل انسانی و بهصورت خودکار تعیین شده است. در این مقاله از مجموعهدادهی UNSW-NB15 برای آموزش و آزمایش استفاده شده است. در این پژوهش، الگوریتم PSO-WOA با محدود کردن فضای جستجو، فراپارامترهای شبکه عصبی را بهینه کرده و شبکه عصبی CNN-LSTM با فراپارامترهای تعیین شده آموزش دیده است. نتایج پیادهسازی حکایت از آن دارد که علاوه بر خودکارسازیِ تعیین فراپارامترهای شبکهی عصبی، نرخ تشخیص روش ما 98.5 درصد بوده که در مقایسه با روشهای دیگر بهبود مناسبی داشته است.
Due to the increasing use of industrial Internet of Things (IIoT) systems, one of the most widely used security mechanisms is intrusion detection system (IDS) in the IIoT. In these systems, deep learning techniques are increasingly used to detect attacks, anomalies or intrusions. In deep learning, the most important challenge for training neural networks is determining the hyperparameters in these networks. To overcome this challenge, we have presented a hybrid approach to automate hyperparameter tuning in deep learning architecture by eliminating the human factor. In this article, an IDS in IIoT based on convolutional neural networks (CNN) and recurrent neural network based on short-term memory (LSTM) using metaheuristic algorithms of particle swarm optimization (PSO) and Whale (WOA) is used. This system uses a hybrid method based on neural networks and metaheuristic algorithms to improve neural network performance and increase detection rate and reduce neural network training time. In our method, considering the PSO-WOA algorithm, the hyperparameters of the neural network are determined automatically without the intervention of human agent. In this paper, UNSW-NB15 dataset is used for training and testing. In this research, the PSO-WOA algorithm has use optimized the hyperparameters of the neural network by limiting the search space, and the CNN-LSTM neural network has been trained with this the determined hyperparameters. The results of the implementation indicate that in addition to automating the determination of hyperparameters of the neural network, the detection rate of are method improve 98.5, which is a good improvement compared to other methods.
Z. Maede, M. A. Teixeira, G. Lav, K. M. Khan and J. Raj, "Machine Learning Based Network Vulnerability Analysis of Industrial Internet of Things," IEEE Internet of Things Jouranl, pp. 6822 - 6834, 2019.
A.-H. Muna, N. Moustafa and E. Sitnikova, "Identification of malicious activities in industrial internet of things based on deep learning models," Journal of Information Security and Applications, vol. 41, pp. 1-11, 2018.
B. Rafael Ramos Regis, "Anomaly detection in SCADA systems: a network based approach," Centre for Telematics and Information Technology, University of Twente, PhD Thesis, 2014.
P. Dimitrios, S. Panagiotis, L. Thomas and A. G. Sarigiannidis, "A Survey on SCADA Systems; Secure Protocols, Incidents, Threats and Tactics," IEEE Communications Surveys & Tutorials, pp. 1942 - 1976, 2020.
L. Hung-jen, R. L. Chun-Hung, L. Ying-Chih and T. Kuang-Yuan, "Intrusion detection system: A comprehensive review," Journal of Network and Computer Applications, vol. 36, no. 1, pp. 16-24, 2013.
S. G. Farhad and G. Hojjat, "A comprehensive survey: Whale Optimization Algorithm and its applications," Swarm and Evolutionary Computation, vol. 48, pp. 1-24, 2019.
H. Turabieh, M. Mafarja and X. Li, "Iterated feature selection algorithms with layered recurrent neural network for software fault prediction," Expert Systems with Applications, vol. 122, pp. 27-42, 2019.
M. L. Naushad, G. Koushik, C. Indronil, C. Saurav, L. B. Krishna and K. P. Prashanta, "HWPSO: A new hybrid whale-particle swarm optimization algorithm and its application in electronic design optimization problems," Applied Intelligence, p. 265–291, 2019.
A. Sadiqui, Computer Network Security, Britain and United States: WILEY, 2020.
S. Anam, A. Haider and S. Kashif, "Cloud-Assisted IoT-Based SCADA Systems Security: A Review of the State of the Art and Future Challenges," IEEE Access, vol. 4, pp. 1375 - 1384, 2016.
O. Campesato, Artificial Intelligence Machine Learning And Deep Learning, David Pallai, 2020.
E. Min, J. Long, Q. Liu, J. Cui and W. Chen, "TR-IDS: Anomaly-Based Intrusion Detection through Text-Convolutional Neural Network and Random Forest," Hindawi, Security and Communication Network, 2018.
K. Tae-Young and C. Sung-Bae, "Web traffic anomaly detection using C-LSTM neural networks," Expert System With Applications, vol. 106, pp. 66-76, 2018.
G. D. L. T. Parra, R. Rad, K.-K. R. Choo and N. Beebe, "Detecting Internet of Things Attacks using Distributed Deep Learning," Journal of Network and Computer Applications, vol. 163, p. 102662, 2020.
Z. Guangzhen, Z. Cuixiao and Z. Lijuan, "Intrusion Detection Using Deep Belief Network and Probabilistic Neural Network," in 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 2017.
H. Yang, L. Cheng and M. C. Chuah, "Deep-Learning-Based Network Intrusion Detection for SCADA Systems," in 2019 IEEE Conference on Communications and Network Security (CNS), Washington DC, DC, USA, USA, 2019.
Y. Chuanlong, Z. Yuefei, F. Jinlong and H. Xinzheng, "A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks," IEEE Access, vol. 5, pp. 21954 - 21961, 2017.
T. Tuan A, M. Lotfi, M. Des, Z. Syed Ali Raza and G. Mounir, "Deep learning approach for Network Intrusion Detection in Software Defined Networking," in 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), Fez, Morocco, 2016.
R. Vinayakumar, A. Mamoun, K. P. Soman, P. Prabaharan, A.-N. Ameer and V. Sitalakshmi, "Deep Learning Approach for Intelligent Intrusion Detection System," IEEE Access, vol. 7, pp. 41525 - 41550, 2019.
N. Mostafa, "Designing an online and reliable statistical anomaly detection framework for dealing with large high-speed network traffic," University of New South Wales, Canberra, Australia, 2017, 2017.
H. Zil E., L. Shahid, A. Jawad, L. Zeba, I. Anas, Z. Zhuo, A. Fehaid and B. Fatmah, "A Hybrid Deep Random Neural Network for Cyberattack Detection in the Industrial Internet of Things," Journals & Magazines, vol. 9, pp. 55595 - 55605, 2021.
K. James and E. Russell, "Particle swarm optimization," in Proceedings of ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia, 1995.
M. Seyedali and L. Andrew, "The Whale Optimization Algorithm," Advances in Engineering Software, vol. 95, pp. 51-67, 2016.
A.-G. Mohammad Ali, M. amr, A.-A. Abdulla khalid, D. Xiaojiang, A. lhsan and G. Mohsen, "A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security," IEEE Communications Serveys & Tutorials, vol. 22, no. 3, pp. 1646 - 1685, 2020.
F. lhab and c. Xu, Data Cleaning, Association for Computing Machinery, 2019.
J. Edward, A User's Guide To Principal Components, New York: John Wiley & Sons, 2005.
C. Alfredo, P. Adam and C. Eugenio, "An Analysis of Deep Neural Network Models for Practical Applications," in Computer Vision and Pattern Recognition (cs.CV), 2017.