تصمیم گیری برخطِ تطبیق پذیر، در زنجیره تأمین مبتني بر اینترنت اشیا (با فرض سفارشهای تدریجي)
محورهای موضوعی : فناوری اطلاعات و ارتباطات
فاطمه محمدی چینی ساز
1
,
سید علیرضا هاشمی گلپایگانی
2
*
,
سعید شریفیان خرطومی
3
1 -
2 - هیات علمی
3 - دانشکده مهندسی برق، دانشگاه صنعتی امیرکبیر، تهران، ایران
کلید واژه: زنجیره تأمین, مدیریت زنجیره تأمین, رویدادهای زنجیره تأمین, اینترنت اشیا, شبکه های پتری.,
چکیده مقاله :
ظهور فناوریهای نوین و جهانیشدن تجارت، رقابت برای تولید محصولات باکیفیت، با حداقل هزینه و زمان را افزایش داده است. بنابراین نیاز به زنجیرههای تأمین انعطافپذیر که بهصورت لحظهای به تغییرات محیط و تقاضای مشتری پاسخ دهند، تشدید شده است. در این راستا، فناوری اینترنت اشیا، راهحلی مناسب برای انتقال اطلاعات درونی و بیرونی زنجیره تأمین می باشد که نقش مؤثری در مدیریت بهینه زنجیره دارد. مدیریت بهینه زنجیره تأمین، ملزوم نگرشی جامع به کل زنجیره و انتخاب همزمان اجزای انجام دهنده سفارش در هر سه لایه اصلی زنجیره است، ولی اکثر مطالعات تنها به تصمیم گیری در یک لایه از زنجیره پرداخته و ارتباط متقابل عملکرد لایهها را نادیده گرفتهاند. همچنین، اکثر تحقیقات، زنجیره تأمین را در محیطی ایستا و بدون توجه به ماهیت پویای آن و رویدادهای درونی و بیرونی زنجیره، مطالعه کردهاند. این پژوهش، با هدف توسعه سیستمی بلادرنگ برای مدیریت سفارشات و رویدادهای زنجیره تأمین، از فناوری اینترنت اشیا بهره می برد. راهحل پیشنهادی با بررسی لحظهای رویدادهای داخلی و خارجی زنجیره، مناسبترین اجزا از تمام لایههای (توزیع، تولید، تأمین) را برای انجام هر سفارش انتخاب میکند تا اثرات منفی رویدادهای پیش بینی نشده را به حداقل برساند. مدل زنجیره، با شبکه پتری توسعهیافته با رنگ و زمان شبیه سازی شده است. این مدل، شامل یک شبکه اصلی و 10 زیرشبکه می باشد که انتخاب اجزا برای سفارشات تدریجی و پاسخ دهی به رویدادهای لحظهای را در کل لایه های زنجیره، پوشش میدهد. مقایسه نتایج راهحل پیشنهادی با "راهحل بهینه" نشان میدهد که این روش میانگین شاخصهای هزینه را 13.8 درصد و شاخص های زمان را 70.5 درصد بهبود می دهد.
The advent of new technologies and global trade has intensified competition to produce high-quality products at lower costs and shorter timelines. This shift highlights the need for flexible, real-time responsive supply chains to adapt to environmental changes and customer demands. Given the dynamic nature of supply chains and their environments, the Internet of Things (IoT) emerges as an effective technology for gathering and transmitting information from internal and external environments, significantly enhancing supply chain management. A review of existing research reveals that most studies have focused on one or two layers of the supply chain, often neglecting the interconnectedness of these layers. Furthermore, prior research has predominantly considered static supply chain environments, disregarding the influence of internal and external changes and events. This research introduces a real-time decision-making system for supply chain management leveraging IoT technology. The proposed system identifies suitable components for each order across all supply chain layers (distribution, production, supply). It also monitors real-time events and provides optimal responses to mitigate the negative effects of disruptions on the order preparation process. Simulation of the supply chain utilizes Colored Petri nets, comprising a main Petri net and 10 subnets to model the distributed structure and dynamic processes of supply chain layers. Comparative analysis with the "Optimal method" indicates that the proposed solution achieves a 13.8% improvement in average cost indicators and a 70.5% enhancement in average time indicators, based on the MAPE criterion, demonstrating its effectiveness in managing dynamic supply chains.
[1] Lambert, D.M. and M.C. Cooper, "Issues in supply chain management. Industrial marketing management," 29(1): p. 65-83, 2000.
[2] Christopher, M. and M. Holweg, "Supply Chain 2.0”: Managing supply chains in the era of turbulence." International journal of physical distribution & logistics management, 41(1): p. 63-82, 2011.
[3] S. Chopra, Supply chain management: strategy, planning, and operation, 7th ed. Pearson, 2019.
[4] Liu, R., A. Kumar, and W. Van Der Aalst, "A formal modeling approach for supply chain event management." Decision Support Systems, 43(3): p. 761-778, 2007.
[5] Xu, L., et al., Towards autonomous supply chains: Definition, characteristics, conceptual framework, and autonomy levels. Journal of Industrial Information Integration, 2024. 42: p. 100698.
[6] Ben-Daya, M., E. Hassini, and Z. Bahroun, "Internet of things and supply chain management." a literature review. International journal of production research, 57(15-16): p. 4719-4742, 2019.
[7] Abdel-Basset, M., G. Manogaran, and M. Mohamed, "Internet of Things (IoT) and its impact on supply chain: A framework for building smart, secure and efficient systems." Future generation computer systems, 86(9): p. 614-628, 2018.
[8] Mims, C, "Here’s the one thing someone needs to invent before the internet of things can take off." Backbone Magazine, February–March, p. 12-13, 2013.
[9] Gubbi, J., et al., "Internet of Things (IoT): A vision, architectural elements, and future directions." Future generation computer systems, 29(7): p. 1645-1660, 2013.
[10] Ellis, S., H.D. Morris, and J. Santagate, "IoT-enabled analytic applications revolutionize supply chain planning and execution." International Data Corporation (IDC) White Paper, 13: p. 259697, 2015.
[11] Drakaki, M. and P. Tzionas, "Investigating the impact of inventory inaccuracy on the bullwhip effect in RFID-enabled supply chains using colored petri nets." Journal of Modelling in Management, 14(2): p. 360-384, 2019.
[12] Wang, J., et al., "An intelligent logistics service system for enhancing dispatching operations in an IoT environment." Transportation Research Part E: Logistics and Transportation Review, 135: p. 101886, 2020.
[13] Al-Rakhami, M.S. and M. Al-Mashari, "A blockchain-based trust model for the internet of things supply chain management." Sensors, 21(5): p. 1759, 2021.
[14] Nachet, B., M. Frendi, and A. Adla, Physical Internet Enabled Traceability Systems for Sustainable Supply Chain Management. Journal of Information and Organizational Sciences, 2024. 48(1): p. 99–116.
[15] Kayvanfar, V., et al., A review of decision support systems in the internet of things and supply chain and logistics using web content mining. Supply Chain Analytics, 2024: p. 100063.
[16] Serpanos, D., Industrial internet of things: Trends and challenges. Computer, 2024. 57(1): p. 124–128.
[17] Ehteshami, M., et al., Identifying and ranking factors affecting the digital transformation strategy in Iran's road freight transportation industry focusing on the Internet of Things and data analytics. Journal of Information and Communication Technology, 2024. 16(59): p. 33–46.
[18] Monfared, N.T., A. Shayan, and a.r. ghotri, The effect of Internet of Things (IOT) implementation on the Rail Freight Industry; A futures study approach. Journal of Information and Communication Technology, 2023. 15(55): p. 191–207.
[19] Balamurugan, S., A. Ayyasamy, and K.S. Joseph, "Enhanced petri nets for traceability of food management using internet of things." Peer-to-Peer Networking and Applications, 14. p. 30-43, 2021.
[20] Fierro, L.H., R.E. Cano, and J.I. García, "Modelling of a multi-agent supply chain management system using Colored Petri Nets." Procedia Manufacturing, 42: p. 288-295, 2020.
[21] Van der Aalst, W., "Putting high-level Petri nets to work in industry. Computers in industry," 25(1): p. 45-54, 1994.
[22] Cavalcante, I.M., et al., "A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing." International Journal of Information Management, 49: p. 86-97, 2019.
[23] Jalali, S., S.A.H. Golpayegani, and H. Ghavamipoor. "Designing a model of decision making in layers of supply, manufacturing, and distribution of the supply chain: A recommender-based system." in 8th International Conference on e-Commerce in Developing Countries: With Focus on e-Trust. IEEE, 2014.
[24] Mazzuto, G., M. Bevilacqua, and F.E. Ciarapica, "Supply chain modelling and managing, using timed coloured Petri nets: a case study." International Journal of Production Research, 50(16): p. 4718-4733, 2012.
[25] Li, Z., et al. "Supplier selection decision-making in supply chain risk scenario using agent based simulation." in 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2015.
[26] Jensen, K., "Seventh Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools," Aarhus, Denmark, October 24-26, 2006(579). DAIMI Report Series, 2006.
[27] Santana-Robles, F., et al., "Modeling and simulation of textile supply chain through colored Petri nets." Intelligent Information Management, 4(5A): p. 261, 2012.
[28] Tools, C., A tool for editing, simulating, and analyzing Colored Petri nets.: http://www.cpntools.org/ 20. 2018.
[29] Ballman, K., "Coloured petri nets: basic concepts, analysis methods and practical use," volume 3. The American Mathematical Monthly, 105(5): p. 493, 1998.
[30] Jensen, K. and L.M. Kristensen, "Coloured Petri Nets: Modelling and Validation of Concurrent Systems." Aarhus, Denmark: Springer-Verlag, 2009.
[31] DOE with MATLAB 1. Available from: https://icme.hpc.msstate.edu/mediawiki/index.php/DOE_with_MATLAB_1.html.
[32] Saif, O.M., et al., Analyzing Supply Chain Structures with Petri Nets: A Composition-Based Approach, in Future Directions in Energy Engineering: Challenges, Opportunities, and Sustainability. 2024, Springer. p. 133–140.
[33] Cao, E.-Z., et al., Hybrid Modeling and Fuzzy Control Via Petri Nets for Supply Chain Networks Under Disruptions. IEEE Transactions on Fuzzy Systems, 2025.
[34] Skorupski, J., et al., Petri nets-based method for operational risk analysis in supply chains based on timeliness and recovery time. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2024. 238(3): p. 523–539.
[35] Kaiyandra, D.R., F. Farizal, and N. Rakoto, Colored Petri Nets for Modeling and Simulation of a Green Supply Chain System. IFAC-PapersOnLine, 2024. 58(1): p. 306–311.
[36] Statgraphics Technologies, I. 2023 [cited 2023; Available from: www.statgraphics.com.
[37] GHEYDAR, K.J., S. GHODSIPOUR, and G.S. FATEMI, "Supply chain optimization policy for a supplier selection problem: a mathematical programming approach." 2010.