• Home
  • الگوریتم جهش قورباغه
  • OpenAccess
    • List of Articles الگوریتم جهش قورباغه

      • Open Access Article

        1 - An Individual-Oriented Shuffled Frog Leaping Algorithm for Solving Vehicle Routing Problem
        Soheila Shafiezadeh Zahra Beheshti
        The Vehicle Routing Problem (VRP) is one of the most important problems in supply chain management because the optimal allocation of vehicles has a significant impact on reducing costs. VRP is in the class of NP-hard problems and exact algorithms cannot find the best so More
        The Vehicle Routing Problem (VRP) is one of the most important problems in supply chain management because the optimal allocation of vehicles has a significant impact on reducing costs. VRP is in the class of NP-hard problems and exact algorithms cannot find the best solution in an acceptable time. Hence, meta-heuristic algorithms can be employed to solve it. Shuffled Frog Leaping Algorithm (SFLA) is one of the meta-heuristic algorithms, which is efficient, but in some cases, its population diversity rapidly reduces, and the algorithm falls in local optima. In this study, an Individual-Oriented Shuffled Frog Leaping Algorithm (IO-SFLA) is proposed to enhance the exploration and exploitation of SFLA by exchanging the global and local information. Several VRPs in different dimensions are applied to evaluate the performance of IO-SFLA. The efficiency of IO-SFLA is compared with several improved shuffled frog leaping algorithms, Simulated Annealing (SA) and Genetic Algorithm (GA). The results show that IO-SFLA provides significant results compared with the other competitor algorithms. IO-SFLA achieves an average of 1130.442 for the best path cost. The next rank belongs to SA with an average of 1228.725. Other compared algorithms are in the lower ranks with high differences in results. Manuscript profile
      • Open Access Article

        2 - Improving the load balancing in Cloud computing using a rapid SFL algorithm (R-SFLA)
        Kiomars Salimi Mahdi Mollamotalebi
        Nowadays, Cloud computing has many applications due to various services. On the other hand, due to rapid growth, resource constraints and final costs, Cloud computing faces with several challenges such as load balancing. The purpose of load balancing is management of th More
        Nowadays, Cloud computing has many applications due to various services. On the other hand, due to rapid growth, resource constraints and final costs, Cloud computing faces with several challenges such as load balancing. The purpose of load balancing is management of the load distribution among the processing nodes in order to have the best usage of resources while having minimum response time for the users’ requests. Several methods for load balancing in Cloud computing have been proposed in the literature. The shuffled frog leaping algorithm for load balancing is a dynamic, evolutionary, and inspired by nature. This paper proposed a modified rapid shuffled frog leaping algorithm (R-SFLA) that converge the defective evolution of frogs rapidly. In order to evaluate the performance of R-SFLA, it is compared to Shuffled Frog Leaping Algorithm (SFLA) and Augmented Shuffled Frog Leaping Algorithm (ASFLA) by the overall execution cost, Makespan, response time, and degree of imbalance. The simulation is performed in CloudSim, and the results obtained from the experiments indicated that the proposed algorithm acts more efficient compared to other methods based on the above mentioned factors. Manuscript profile