افزایش مقدار داده جمعآوری شده و کاهش مصرف انرژی با استفاده از کدگذاری شبکه و سینکهای متحرک در شبکههای حسگر بیسیم
محورهای موضوعی : عمومى
1 - دانشکده فنی و مهندسی، گروه کامپیوتر، دانشگاه آزاد اسلامی واحد قم
کلید واژه: شبکههای حسگر بیسیم, کدگذاری شبکه, مسیر بهینه سینک متحرک, کاهش مصرف انرژی, افزایش دادههای جمعآوری شده.,
چکیده مقاله :
شبکه حسگر بیسیم شامل تعدادی گره حسگر ثابت بوده که گرههای سینک برای جمعآوری دادهها بین گرهها حرکت میکنند. برای کاهش مصرف انرژی و افزایش مقدار داده جمعآوری شده نیاز به تعیین مسیر بهینه و مکان اقامت سینکهای متحرک است که سبب افزایش عمر شبکههای حسگر بیسیم میشود. این مقاله، با استفاده از کدگذاری شبکه، یک مدل ریاضی خطی صحیح مختلط یا MILP برای تعیین مسیر بهینه چندپخشی از گرههای حسگر منبع به سینکهای متحرک در شبکههای حسگر بیسیم ارایه داده که زمان و مکانهای اقامت سینکها را تعیین میکند تا جمعآوری دادههای کدگذاری شده حداکثر شود و تاخیر حرکت سینکها و میزان مصرف انرژی کاهش یابد. حل این مساله در زمان چندجملهای به دلیل دخیل بودن پارامترهای مختلف و محدود بودن منابع شبکههای حسگر بیسیم امکانپذیر نیست. لذا برای حل این مساله در زمان چندجملهای، چند الگوریتم اکتشافی و حریصانه و کاملا توزیعشده پیشنهاد شده تا حرکت سینکها و مکان اقامت آنها را براساس حداکثر کردن مقدار دادههای کدگذاری شده و نوع مهلت زمانی دادهها تعیین کند. با شبیهسازی نشان داده که روش بهینه و استفاده از کدگذاری و الگوریتمهای پیشنهادی سبب کاهش زمان اجرا و مصرف انرژی و افزایش دادههای جمعآوری شده و عمر شبکه نسبت به روشهای فاقد کدگذاری شبکه میشود.
The wireless sensor network includes a number of fixed sensor nodes that move sink nodes to collect data between nodes. To reduce energy consumption and increase the value of collected data, it is necessary to determine the optimum route and residence location of mobile sinks, which increases the life of wireless sensor networks. Using network coding, this paper presents a Mixed Integer Linear Programming Model to determine the optimal multicast routing of source sensor nodes to mobile sinks in wireless sensor networks, which determines the time and location of sinks to collect maximum coded data and reduces the delay in sink movement and energy consumption. Solving this problem in polynomial time is not possible due to the involvement of various parameters and the constrained resources of wireless sensor networks. Therefore, several exploratory and greedy and fully distributed algorithms are proposed to determine the movement of sinks and their residence location based on maximizing the value of coded data and the type of data dead time. By simulating, the optimal method and the use of coding and proposed algorithms, reduce the runtime and energy consumption and increase the value of collected data and network lifetime than non-coding methods.
[1] P. Gjanci, C. Petrioli, S. Basagni, C. A. Phillips, L. Bölöni, and D. Turgut, “Path finding for maximum value of information in multi-modal underwater wireless sensor networks,” IEEE Transactions on Mobile Computing, vol. 17, no. 2, pp. 404-418, 2018.
[2] N. Sabor, S. Sasaki, M. Abo-Zahhad, and S. M. Ahmed, “A comprehensive survey on hierarchical-based routing protocols for mobile wireless sensor networks: review, taxonomy, and future directions,” Wireless Communications and Mobile Computing, vol. 2017, 2017.
[3] Z. Fei, B. Li, S. Yang, C. Xing, H. Chen, and L. Hanzo, “A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms, and open problems,” IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 550-586, 2017.
[4] A. Mehrabi, and K. Kim, “Maximizing data collection throughput on a path in energy harvesting sensor networks using a mobile sink,” IEEE Transactions on Mobile Computing, no. 3, pp. 690-704, 2016.
[5] F. Tashtarian, M. H. Y. Moghaddam, K. Sohraby, and S. Effati, “On maximizing the lifetime of wireless sensor networks in event-driven applications with mobile sinks,” IEEE Transactions on Vehicular Technology, vol. 64, no. 7, pp. 3177-3189, 2015.
[6] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information flow,” IEEE Transactions on information theory, vol. 46, no. 4, pp. 1204-1216, 2000.
[7] S. Basagni, A. Carosi, E. Melachrinoudis, C. Petrioli, and Z. M. Wang, "A New MILP Formulation and Distributed Protocols for Wireless Sensor Networks Lifetime Maximization." pp. 3517-3524.
[8] W. Cai, M. Chen, T. Hara, and L. Shu, "GA-MIP: genetic algorithm based multiple mobile agents itinerary planning in wireless sensor networks." pp. 1-8.
[9] M. Chen, S. Gonzalez, Y. Zhang, and V. C. Leung, "Multi-agent itinerary planning for wireless sensor networks." pp. 584-597.
[10] S. R. Gandham, M. Dawande, R. Prakash, and S. Venkatesan, "Energy efficient schemes for wireless sensor networks with multiple mobile base stations." pp. 377-381.
[11] D. Jea, A. Somasundara, and M. Srivastava, "Multiple controlled mobile elements (data mules) for data collection in sensor networks." pp. 244-257.
[12] J. Luo, and J.-P. Hubaux, "Joint mobility and routing for lifetime elongation in wireless sensor networks." pp. 1735-1746.
[13] W. Wang, V. Srinivasan, and K.-C. Chua, "Using mobile relays to prolong the lifetime of wireless sensor networks." pp. 270-283.
[14] W. Rehan, S. Fischer, and M. Rehan, “Anatomizing the robustness of multichannel MAC protocols for WSNs: An evaluation under MAC oriented design issues impacting QoS,” Journal of Network and Computer Applications, vol. 121, pp. 89-118, 2018/11/01/, 2018.
[15] P. Gjanci, C. Petrioli, S. Basagni, C. A. Phillips, L. Bölöni, and D. J. I. T. o. M. C. Turgut, “Path finding for maximum value of information in multi-modal underwater wireless sensor networks,” vol. 17, no. 2, pp. 404-418, 2018.
[16] C. Lv, Q. Wang, W. Yan, and J. Li, “A sparsity feedback-based data gathering algorithm for Wireless Sensor Networks,” Computer Networks, vol. 141, pp. 145-156, 2018/08/04/, 2018.
[17] R. Logambigai, S. Ganapathy, and A. Kannan, “Energy–efficient grid–based routing algorithm using intelligent fuzzy rules for wireless sensor networks,” Computers & Electrical Engineering, vol. 68, pp. 62-75, 2018/05/01/, 2018.
[18] C. Li, J. Bai, J. Gu, X. Yan, and Y. Luo, “Clustering routing based on mixed integer programming for heterogeneous wireless sensor networks,” Ad Hoc Networks, vol. 72, pp. 81-90, 2018/04/01/, 2018.
[19] O. M. Al-Kofahi, and A. E. Kamal, "Transmissions Scheduling in Network Coding-Based Resilient WSNs," Resilient Wireless Sensor Networks, pp. 53-65: Springer, 2015.
[20] M. Khalily-Dermany, and M. J. Nadjafi-Arani, “Itinerary planning for mobile sinks in network-coding-based wireless sensor networks,” Computer Communications, vol. 111, pp. 1-13, 2017/10/01/, 2017.
[21] C. Abreu, F. Miranda, and P. M. Mendes, “Smart context-aware QoS-based admission control for biomedical wireless sensor networks,” Journal of Network and Computer Applications, vol. 88, pp. 134-145, 2017/06/15/, 2017.
[22] N. Javaid, S. Hussain, A. Ahmad, M. Imran, A. Khan, and M. Guizani, “Region based cooperative routing in underwater wireless sensor networks,” Journal of Network and Computer Applications, vol. 92, pp. 31-41, 2017/08/15/, 2017.
[23] I. L. C. Vasconcelos, I. C. Martins, C. M. S. Figueiredo, and A. L. L. Aquino, “A data sample algorithm applied to wireless sensor network with disruptive connections,” Computer Networks, vol. 146, pp. 1-11, 2018/12/09/, 2018.
[24] A. Abuarqoub, M. Hammoudeh, B. Adebisi, S. Jabbar, A. Bounceur, and H. Al-Bashar, “Dynamic clustering and management of mobile wireless sensor networks,” Computer Networks, vol. 117, pp. 62-75, 2017/04/22/, 2017.
[25] Z. Fei, B. Li, S. Yang, C. Xing, H. Chen, L. J. I. C. S. Hanzo, and Tutorials, “A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms, and open problems,” vol. 19, no. 1, pp. 550-586, 2017.
[26] F. Tashtarian, M. H. Y. Moghaddam, K. Sohraby, and S. J. I. T. o. V. T. Effati, “On maximizing the lifetime of wireless sensor networks in event-driven applications with mobile sinks,” vol. 64, no. 7, pp. 3177-3189, 2015.
[27] M. Koç, and I. J. I. J. o. D. S. N. Korpeoglu, “Controlled sink mobility algorithms for wireless sensor networks,” vol. 10, no. 4, pp. 167508, 2014.
[28] M. K. Dermany, and S. Sharifian, “Effect of various topology control mechanisms on maximum information flow in wireless sensor networks,” SmartCR, vol. 5, no. 1, pp. 10-18, 2015.
[29] T. Ho, B. Leong, R. Koetter, M. Médard, M. Effros, and D. R. Karger, “Byzantine modification detection in multicast networks with random network coding,” IEEE Transactions on Information Theory, vol. 54, no. 6, pp. 2798-2803, 2008.
[30] M. Khalily-Dermany, and M. Nadjafi-Arani, “Itinerary planning for mobile sinks in network-coding-based wireless sensor networks,” Computer Communications, vol. 111, pp. 1-13, 2017.
[31] T. Ho, and D. Lun, Network coding: an introduction: Cambridge University Press, 2008.
[32] M. Khalily-Dermany, M. Shamsi, and M. J. Nadjafi-Arani, “A convex optimization model for topology control in network-coding-based-wireless-sensor networks,” Ad Hoc Networks, vol. 59, pp. 1-11, 2017.
[33] G. A. Shah, and O. B. Akan, “Timing-based mobile sensor localization in wireless sensor and actor networks,” Mobile Networks and Applications, vol. 15, no. 5, pp. 664-679, 2010.
[34] B. Khodabakhshi, and M. Khalily, “An energy efficient network coding model for wireless sensor networks,” Procedia Computer Science, vol. 98, pp. 157-162, 2016.
[35] X. Wang, M. Chen, T. Kwon, and H.-C. Chao, “Multiple mobile agents' itinerary planning in wireless sensor networks: survey and evaluation,” IET communications, vol. 5, no. 12, pp. 1769-1776, 2011.
[36] H. Kaushal, and G. Kaddoum, “Underwater optical wireless communication,” IEEE access, vol. 4, pp. 1518-1547, 2016.
[37] C. Petrioli, R. Petroccia, J. R. Potter, and D. Spaccini, “The SUNSET framework for simulation, emulation and at-sea testing of underwater wireless sensor networks,” Ad Hoc Networks, vol. 34, pp. 224-238, 2015.
[38] A. Darehshoorzadeh, N. T. Javan, and M. Dehghan, "LBAODV: a new load balancing multipath routing algorithm for mobile ad hoc networks." pp. 344-349.
[39] F. Bai, K. S. Munasinghe, and A. Jamalipour, “A novel information acquisition technique for mobile-assisted wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 61, no. 4, pp. 1752-1761, 2012.
[40] W. Liang, J. Luo, and X. Xu, "Prolonging network lifetime via a controlled mobile sink in wireless sensor networks." pp. 1-6.
[41] C. Konstantopoulos, G. E. Pantziou, D. Gavalas, A. Mpitziopoulos, and B. Mamalis, “A Rendezvous-Based Approach Enabling Energy-Efficient Sensory Data Collection with Mobile Sinks,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 5, pp. 809-817, 2012.
[42] C. Gkantsidis, J. Miller, and P. Rodriguez, "Comprehensive view of a live network coding P2P system." pp. 177-188.
[43] M. K. Dermany, M. Sabaei, and M. Shamsi, “Topology control in network–coding–based–multicast wireless sensor networks,” International Journal of Sensor Networks, vol. 17, no. 2, pp. 93-104, 2015.
[44] B. Behdani, Y. S. Yun, J. Cole Smith, and Y. Xia, “Decomposition algorithms for maximizing the lifetime of wireless sensor networks with mobile sinks,” Computers & Operations Research, vol. 39, no. 5, pp. 1054-1061, 2012/05/01/, 2012.
[45] J. A. Khan, H. K. Qureshi, and A. Iqbal, “Energy management in Wireless Sensor Networks: A survey,” Computers & Electrical Engineering, vol. 41, pp. 159-176, 2015/01/01/, 2015.