بهبود مدیریت منابع در اینترنت اشیا با استفاده از محاسبات مه و الگوریتم بهینهسازی شیر مورچه
محورهای موضوعی : فناوری اطلاعات و ارتباطاتپیام شمس 1 , سیده لیلی میرطاهری 2 * , رضا شهبازیان 3 , احسان آریانیان 4
1 - دانشگاه خوارزمی
2 - دانشگاه خوارزمی
3 - دانشگاه شهید بهشتی
4 - پژوهشگاه ارتباطات و فناوری اطلاعات
کلید واژه: اینترنت اشیا, محاسبات مه, الگوریتم بهینه سازی شیر مورچه, تخصیص منابع, ,
چکیده مقاله :
در این مقاله مدلی مبتنی بر الگوریتمهای فراابتکاری برای تخصیص بهینه منابعدر اینترنت اشیا مبتنی بر محاسبات مه پیشنهاد شده است. در مدل پیشنهادی، ابتدا درخواست کاربر بهصورت یک جریان کاری به سیستم داده میشود؛ تا بهازای هر درخواست ابتدا نیازمندیهای منابع (قدرت پردازش، حافظهی ذخیرهسازی و پهنای باند) استخراج میگردد. این مؤلفه وضعیت ترافیک درخواستی برنامه را از لحاظ بلادرنگ بودن تعیین میکند. درصورتیکه کاربرد مورد نظر بلادرنگ نباشد و در مقابل تأخیر تا حدودی مقاوم باشد، درخواست به محیط ابری ارجاع داده میشود، اما اگر برنامه کاربردی مورد نظر نیاز به پاسخگویی بلادرنگ داشته باشد و حساس به تأخیر باشد، بهصورت محاسبات مه با آن برخورد خواهد شد و به یکی از کلودلتها نگاشته خواهد شد. این این مرحله به منظور انتخاب بهترین راه حل در تخصیص منابع جهت سرویسدهی به کاربران محیط IoT، از الگوریتم بهینهسازی شیر مورچه استفاده شد. روش پیشنهادی در محیط نرمافزاری متلب شبیهسازی شده و برای ارزیابی عملکرد آن از پنج شاخص انرژی مصرفی سلولهای مه، زمان پاسخگویی، درجهی عدم تعادل سلولهای مه، تأخیر و پهنای باند استفاده گردیده است. بررسی یافتهها نشان میدهد که روش پیشنهادی، میزان انرژی مصرفی، نرخ تأخیر را در سلولهای مه، نرخ پهنای باند مصرفی، میزان تعادل بار و زمان پاسخگویی را در مقایسه با طرح پایه (ROUTER) به ترتیب 22، 18، 12، 22 و 47 درصد بهبود داده است.
In this paper, a model based on meta-heuristic algorithms for optimal allocation of IoT resources based on fog calculations is proposed. In the proposed model, the user request is first given to the system as a workflow; For each request, the resource requirements (processing power, storage memory, and bandwidth) are first extracted. This component determines the requested traffic status of the application in terms of real-time. If the application is not real-time and is somewhat resistant to latency, the request will be referred to the cloud environment, but if the application needs to respond promptly and is sensitive to latency, it will be dealt with as a fog calculation. It will be written to one of the Cloudletes. In this step, in order to select the best solution in allocating resources to serve the users of the IoT environment, the ant milk optimization algorithm was used. The proposed method is simulated in MATLAB software environment and to evaluate its performance, five indicators of fog cells energy consumption, response time, fog cell imbalance, latency and bandwidth have been used. The results show that the proposed method reduces the energy consumption, latency rate in fog cells, bandwidth consumption rate, load balance rate and response time compared to the base design (ROUTER) 22, 18, 12, 22 and 47, respectively. Percentage has improved.
[1] U. Z. A. Hamid, H. Zamzuri, and D. K. Limbu, "Internet of vehicle (IoV) applications in expediting the implementation of smart highway of autonomous vehicle: A survey," in Performability in Internet of Things: Springer, 2019, pp. 137-157.
[2] P. Podder, M. Mondal, S. Bharati, and P. K. Paul, "Review on the security threats of internet of things," arXiv preprint arXiv:2101.05614, 2021.
[3] S. Enshaeifar et al., "The internet of things for dementia care," IEEE Internet Computing, vol. 22, no. 1, pp. 8-17, 2018.
[4] A. Čolaković and M. Hadžialić, "Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues," Computer Networks, 2018.
[5] K. B. Kiadehi, A. M. Rahmani, and A. S. Molahosseini, "A fault-tolerant architecture for internet-of-things based on software-defined networks," Telecommunication Systems, vol. 77, no. 1, pp. 155-169, 2021.
[6] J. Zhang, S. Rajendran, Z. Sun, R. Woods, and L. Hanzo, "Physical layer security for the Internet of Things: Authentication and key generation," IEEE Wireless Communications, vol. 26, no. 5, pp. 92-98, 2019.
[7] S. Sankar, S. Ramasubbareddy, F. Chen, and A. H. Gandomi, "Energy-Efficient Cluster-based Routing Protocol in Internet of Things Using Swarm Intelligence," in 2020 IEEE Symposium Series on Computational Intelligence (SSCI), 2020, pp. 219-224: IEEE.
[8] Z. Sang, R. Fang, H. Lei, J. Yan, D. Yang, and Y. Wang, "The Internet of Things Based Fault Tolerant Redundancy for Energy Router in the Interacted and Interconnected Micro Grid," International Journal on Artificial Intelligence Tools, vol. 29, no. 07n08, p. 2040019, 2020.
[9] K. Sato and S.-i. Azuma, "Secure real-time control through fog computation," IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1017-1026, 2018.
[10] S. Wang, Y. Ruan, Y. Tu, S. Wagle, C. G. Brinton, and C. Joe-Wong, "Network-aware optimization of distributed learning for fog computing," IEEE/ACM Transactions on Networking, 2021.
[11] D. Tychalas and H. Karatza, "A scheduling algorithm for a fog computing system with bag-of-tasks jobs: Simulation and performance evaluation," Simulation Modelling Practice and Theory, vol. 98, p. 101982, 2020.
[12] J. Yao and N. Ansari, "Task allocation in fog-aided mobile IoT by Lyapunov online reinforcement learning," IEEE Transactions on Green Communications and Networking, vol. 4, no. 2, pp. 556-565, 2019.
[13] L. Liu, D. Qi, N. Zhou, and Y. Wu, "A task scheduling algorithm based on classification mining in fog computing environment," Wireless Communications and Mobile Computing, vol. 2018, 2018.
[14] M. Nawir, A. Amir, N. Yaakob, and O. B. Lynn, "Internet of Things (IoT): Taxonomy of security attacks," in 2016 3rd International Conference on Electronic Design (ICED), 2016, pp. 321-326: IEEE.
[15] A. Oracevic, S. Dilek, and S. Ozdemir, "Security in internet of things: A survey," in 2017 International Symposium on Networks, Computers and Communications (ISNCC), 2017, pp. 1-6: IEEE.
[16] F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, "Internet of Things security: A survey," Journal of Network and Computer Applications, vol. 88, pp. 10-28, 2017.
[17] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, "A survey on security and privacy issues in Internet-of-Things," IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1250-1258, 2017.
[18] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of Things (IoT): A vision, architectural elements, and future directions," Future generation computer systems, vol. 29, no. 7, pp. 1645-1660, 2013.
[19] E. T. Chen, "The Internet of Things: Opportunities, Issues, and Challenges," in The Internet of Things in the Modern Business Environment: IGI Global, 2017, pp. 167-187.
[20] I. C. Ng and S. Y. Wakenshaw, "The Internet-of-Things: Review and research directions," International Journal of Research in Marketing, vol. 34, no. 1, pp. 3-21, 2017.
[21] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, "A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications," IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125-1142, 2017.
[22] H. Atlam, R. Walters, and G. Wills, "Fog computing and the Internet of Things: a review," Big Data and Cognitive Computing, vol. 2, no. 2, p. 10, 2018.
[23] M. Aazam and E.-N. Huh, "Fog computing and smart gateway based communication for cloud of things," in Future Internet of Things and Cloud (FiCloud), 2014 International Conference on, 2014, pp. 464-470: IEEE.
[24] R. Lu, K. Heung, A. H. Lashkari, and A. A. Ghorbani, "A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT," IEEE Access, vol. 5, pp. 3302-3312, 2017.
[25] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y. Zomaya, "Secure and Sustainable Load Balancing of Edge Data Centers in Fog Computing," IEEE Communications Magazine, vol. 56, no. 5, pp. 60-65, 2018.
[26] S. Yousefi, F. Derakhshan, H. S. Aghdasi, and H. Karimipour, "An energy-efficient artificial bee colony-based clustering in the internet of things," Computers & Electrical Engineering, vol. 86, p. 106733, 2020.
[27] T. F. Rahman, V. Pilloni, and L. Atzori, "Application Task Allocation in Cognitive IoT: A Reward-Driven Game Theoretical Approach," IEEE Transactions on Wireless Communications, vol. 18, no. 12, pp. 5571-5583, 2019.
[28] E. A. Khalil, S. Ozdemir, and S. Tosun, "Evolutionary task allocation in Internet of Things-based application domains," Future Generation Computer Systems, vol. 86, pp. 121-133, 2018.
[29] E. Abd-Elrahman, H. Afifi, L. Atzori, M. Hadji, and V. Pilloni, "IoT-D2D task allocation: An award-driven game theory approach," in 2016 23rd International Conference on Telecommunications (ICT), 2016, pp. 1-6: IEEE.
[30] S. Pešić, M. Tošić, O. Iković, M. Ivanović, M. Radovanović, and D. Bošković, "Context aware resource and service provisioning management in fog computing systems," in International Symposium on Intelligent and Distributed Computing, 2017, pp. 213-223: Springer.
[31] K. M. Sim, "Intelligent Resource Management in Intercloud, Fog, and Edge: Tutorial and New Directions," IEEE Transactions on Services Computing, 2020.
[32] S. Lee and J. Y. Choeh, "Predicting the helpfulness of online reviews using multilayer perceptron neural networks," Expert Systems with Applications, vol. 41, no. 6, pp. 3041-3046, 2014.
[33] D. Hoang and T. D. Dang, "FBRC: Optimization of task scheduling in fog-based region and cloud," in 2017 IEEE Trustcom/BigDataSE/ICESS, 2017, pp. 1109-1114: IEEE.
[34] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, "Resource allocation strategy in fog computing based on priced timed petri nets," ieee internet of things journal, vol. 4, no. 5, pp. 1216-1228, 2017.
[35] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, "Cost efficient resource management in fog computing supported medical cyber-physical system," IEEE Transactions on Emerging Topics in Computing, vol. 5, no. 1, pp. 108-119, 2015.
[36] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, "Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system," IEEE Transactions on Computers, vol. 65, no. 12, pp. 3702-3712, 2016.
[37] V. B. C. Souza, W. Ramírez, X. Masip-Bruin, E. Marín-Tordera, G. Ren, and G. Tashakor, "Handling service allocation in combined fog-cloud scenarios," in 2016 IEEE international conference on communications (ICC), 2016, pp. 1-5: IEEE.
[38] H. Zhang, Y. Xiao, S. Bu, D. Niyato, R. Yu, and Z. Han, "Fog computing in multi-tier data center networks: A hierarchical game approach," in 2016 IEEE international conference on communications (ICC), 2016, pp. 1-6: IEEE.
[39] M. Aazam and E.-N. Huh, "Dynamic resource provisioning through fog micro datacenter," in 2015 IEEE international conference on pervasive computing and communication workshops (PerCom workshops), 2015, pp. 105-110: IEEE.
[40] X.-Q. Pham and E.-N. Huh, "Towards task scheduling in a cloud-fog computing system," in 2016 18th Asia-Pacific network operations and management symposium (APNOMS), 2016, pp. 1-4: IEEE.
[41] B. Neethu and K. R. Babu, "Dynamic resource allocation in market oriented cloud using auction method," in 2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE), 2016, pp. 145-150: IEEE.
[42] J. Ding, Z. Zhang, R. T. Ma, and Y. Yang, "Auction-based cloud service differentiation with service level objectives," Computer Networks, vol. 94, pp. 231-249, 2016.
[43] H. Wang, Z. Kang, and L. Wang, "Performance-aware cloud resource allocation via fitness-enabled auction," IEEE transactions on parallel and distributed systems, vol. 27, no. 4, pp. 1160-1173, 2015.
[44] D. A. Reddy and P. V. Krishna, "Feedback-based fuzzy resource management in IoT using fog computing," Evolutionary Intelligence, pp. 1-13, 2020.
[45] B. Mallikarjuna, "Feedback-Based Fuzzy Resource Management in IoT-Based-Cloud," International Journal of Fog Computing (IJFC), vol. 3, no. 1, pp. 1-21, 2020.
[46] S. S. Gill, P. Garraghan, and R. Buyya, "ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices," Journal of Systems and Software, vol. 154, pp. 125-138, 2019.