Improved routing for load balancing in wireless sensor networks on the Internet of things, based on multiple ant colony algorithm
Subject Areas :Farhang Padidaran Moghaddam 1 * , Hamid Maghsoudi 2
1 - Esfarayen University of Technology
2 - Eshragh Institute of Higher Education
Keywords: Routing, load balancing, Internet of things and ant colony algorithm,
Abstract :
An important issue in dynamic computer networks such as Internet networks, where the cost of connections varies continuously, is to create a traffic load balancing and increase the transmission speed of packets in the network, so that data packets are using paths with minimal congestion, as a result, one of the main approaches to solve routing problems and load balancing algorithms is based on ant - based algorithms using a novel approach based on optimization of multiple ant colony optimization, the purpose of this research is to present an appropriate routing algorithm in order to shorten and improve the path due to end - to - end delay parameters, packet loss rate, bandwidth and energy consumption rate, to reach a sense of data on the Internet systems. this method has been implemented in MATLAB software and shows the results of the improvement experiments in the mentioned parameters.
[1] صادق سبزی، روش جدید مسیریابی با استفاده از الگوریتم بهینهسازی ذرات در شبکههای حسگر بیسیم، اولین همایش داخلی مهندسی کامپیوتر و فناوری اطلاعات، بروجن، دانشگاه آزاد اسلامی واحد بروجن، ۱۳۹۳.
[2] میثم پناهی, و علی یاراحمدی، شبکهی حسگر به یسیم در اینترنت اشیاء و عصر رایانش ابری، سومین همایش ملی مهندسی رایانه و مدیریت فناوری اطلاعات، تهران، شرکت علم و طلوع فرزین، ۱۳۹۵.
[3] N. Kushalnagar, G. Montenegro, & C. Schumacher, IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals, 2007.
[4] J. V. Sobral, J. J. Rodrigues, R. A. Rabêlo, J. Al-Muhtadi, & V. Korotaev, Routing protocols for low power and lossy networks in internet of things applications. Sensors, 19(9), 2144, 2019.
[5] O. Said, Analysis, design and simulation of Internet of Things routing algorithm based on ant colony optimization. International Journal of Communication Systems, 30(8), e3174, 2017.
[6] سید مهدی دادگر ، علی برومند نیا و سمیه فرهنگ ادیب، چالش های موجود در اینترنت اشیاء و راههای مقابله با آن دررسیدن به یک شهر هوشمند، کنفرانس ملی علوم و مهندسی کامپیوتر و فناوری اطلاعات، بابل، موسسه علمی تحقیقاتی کومه علم آوران دانش، ۱۳۹۵.
[7] S. Randhawa, & S. Jain, Data aggregation in wireless sensor networks: Previous research, current status and future directions. Wireless Personal Communications, 97(3), 3355-3425, 2017.
[8] T. Baker, M. Asim, H. Tawfik, B. Aldawsari, & R. Buyya, An energy-aware service composition algorithm for multiple cloud-based IoT applications. Journal of Network and Computer Applications, 89, 96-108, 2017.
[9] S. B. Shah, Z. Chen, F. Yin, I. U. Khan, & N. Ahmad, Energy and interoperable aware routing for throughput optimization in clustered IoT-wireless sensor networks. Future Generation Computer Systems, 81, 372-381, 2018.
[10] F. Al-Turjman, Cognitive routing protocol for disaster-inspired internet of things. Future Generation Computer Systems, 92, 1103-1115, 2019.
[11] O. Gaddour, & A. Koubâa, RPL in a nutshell: A survey. Computer Networks, 56(14), 3163-3178, 2012.
[12] H. S. Kim, H. Kim, J. Paek, & S. Bahk, Load balancing under heavy traffic in RPL routing protocol for low power and lossy networks. IEEE Transactions on Mobile Computing, 16(4), 964-979, 2016.
[13] S. Hamrioui, C. A. M. Hamrioui, J. Lioret, P. & Lorenz, Smart and self-organised routing algorithm for efficient IoT communications in smart cities. IET Wireless Sensor Systems, 8(6), 305-312, 2018.
[14] S. Banerjee , D. Wu , X. Lin , X. Zhang , T. Abdelzaher , S. Avestimehr , V. Bahl, S. Basagni , D. Blough , R.B. R , M. Buddhikot , Final report from the NSF Work- shop on Future Directions in Wireless Networking, pp. 1025-1037, 2014.
[15] D. Thomas, O. Deblecker, & C. S. Ioakimidis, Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule. Applied Energy, 210, 1188-1206, 2018.
[16] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, & G. P. Hancke, G. P. A survey on smart grid potential applications and communication requirements. IEEE Transactions on industrial informatics, 9(1), 28-42, 2012.