ارائه ی مدلی برای عقیده کاوی در سطح ویژگی برای نظرات کاربران هتل ها
محورهای موضوعی :
الهام خلج
1
,
شهریار محمدی
2
*
1 - دانشگاه صنعتی خواجه نصیرالدین طوسی
2 - دانشکده مهندسی صنایع، دانشگاه صنعتی خواجه نصیرالدین طوسی، ایران
کلید واژه:
چکیده مقاله :
امروزه بررسی نظرات و عقاید کاربران در بستر اینترنت بخش مهمی از فرآیند تصمیم گیری مردم در رابطه با انتخاب یک محصول یا استفاده از خدمات ارایه شده را شامل می شود. با وجود بستر اینترنت و دسترسی ساده به وبلاگ های مربوط به نظرات در زمینه صنعت گردشگری و هتلداری، منابع غنی و عظیمی از عقاید بصورت متن موجود می باشد که افراد میتوانند از روش های متن کاوی برای کشف عقاید دیگران استفاده کنند. با توجه به اهمیت نظر و عقاید کاربران در صنایع و بویژه صنعت گردشگری و هتلداری، مباحث عقیدهکاوی و تحلیل احساسات و کاوش متون نوشته شده توسط کاربران مورد توجه متصدیان امور قرار گرفته است . در این مقاله یک روش ترکیبی و جدید بر اساس یک رویکرد رایج در تحلیل احساسات، استفاده از واژگان برای تولید ویژگی هایی برای طبقه بندی بار احساسی نظرات ارائه شده است. بدین صورت که دو روش ساخت فهرست واژگان یکی با استفاده از روش های آماری و دیگری با استفاده از الگوریتم ژنتیکی ارائه شده است. واژگان فوق الذکر با فرهنگ واژگان احساس عمومی و استاندارد لیو بینگ آمیخته می شوند تا دقت طبقه بندی افزایش یابد.
Nowadays, online review of user’s sentiments and opinions on the Internet is an important part of the process of people deciding whether to choose a product or use the services provided. Despite the Internet platform and easy access to blogs related to opinions in the field of tourism and hotel industry, there are huge and rich sources of ideas in the form of text that people can use text mining methods to discover the opinions of. Due to the importance of user's sentiments and opinions in the industry, especially in the tourism and hotel industry, the topics of opinion research and analysis of emotions and exploration of texts written by users have been considered by those in charge. In this research, a new and combined method based on a common approach in sentiment analysis, the use of words to produce characteristics for classifying reviews is presented. Thus, the development of two methods of vocabulary construction, one using statistical methods and the other using genetic algorithm is presented. The above words are combined with the Vocabulary of public feeling and standard Liu Bing classification of prominent words to increase the accuracy of classification