Improving resource allocation in mobile edge computing using gray wolf and particle swarm optimization algorithms
Subject Areas : ICTseyed ebrahim dashti 1 * , saeid shabooei 2
1 -
2 - Islamic Azad university
Keywords: Improving resource allocation , mobile edge computing , particle swarm optimization algorithm, gray wolf algorithm.,
Abstract :
Mobile edge computing improves the experience of end users to achieve appropriate services and service quality. In this paper, the problem of improving resource allocation when offloading tasks based on mobile devices to edge servers in computing systems was investigated. Some tasks are processed locally and some are offloaded to edge servers. The main issue is that the offloaded tasks for virtual machines in computing networks are properly scheduled to minimize computing time, service cost, computing network waste, and the maximum connection of a task with the network. In this paper, it was introduced using the hybrid algorithm of particle swarm and gray wolf to manage resource allocation and task scheduling to achieve an optimal result in edge computing networks. The comparison results show the improvement of waiting time and cost in the proposed approach. The results show that, on average, the proposed model has performed better by reducing the work time by 10% and increasing the use of resources by 16%.
1. Huda, S. A., & Moh, S. (2022). Survey on computation offloading in UAV-Enabled mobile edge computing. Journal of Network and Computer Applications, 103341.
2. Li, X., Lan, X., Mirzaei, A., & Bonab, M. J. A. (2022). Reliability and robust resource allocation for Cache-enabled HetNets: QoS-aware mobile edge computing. Reliability Engineering & System Safety, 220, 108272.
3. Sulieman, N. A., Ricciardi Celsi, L., Li, W., Zomaya, A., & Villari, M. (2022). Edge-Oriented Computing: A Survey on Research and Use Cases. Energies, 15(2), 452.
4. Kumar, D., Baranwal, G., & Vidyarthi, D. P. (2022). A Survey on Auction based Approaches for Resource Allocation and Pricing in Emerging Edge Technologies. Journal of Grid Computing, 20(1), 1-52.
5. Wang, Z., Lv, T., & Chang, Z. (2022). Computation offloading and resource allocation based on distributed deep learning and software defined mobile edge computing. Computer Networks, 108732.
6. Qiu, H., Zhu, K., Luong, N. C., Yi, C., Niyato, D., & Kim, D. I. (2022). Applications of auction and mechanism design in edge computing: A survey. IEEE Transactions on Cognitive Communications and Networking.
7. Ometov, A., Molua, O. L., Komarov, M., & Nurmi, J. (2022). A Survey of Security in Cloud, Edge, and Fog Computing. Sensors, 22(3), 927.
8. Singh, A., Satapathy, S. C., Roy, A., & Gutub, A. (2022). AI-Based Mobile Edge Computing for IoT: Applications, Challenges, and Future Scope. Arabian Journal for Science and Engineering, 1-31.
9. Qiu, H., & Li, T. (2022). Auction method to prevent bid-rigging strategies in mobile blockchain edge computing resource allocation. Future Generation Computer Systems, 128, 1-15.
10. Fan, Y., Wang, L., Wu, W., & Du, D. (2021). Cloud/edge computing resource allocation and pricing for mobile blockchain: an iterative greedy and search approach. IEEE Transactions on Computational Social Systems, 8(2), 451-463.
11. Zhang, L., Zou, Y., Wang, W., Jin, Z., Su, Y., & Chen, H. (2021). Resource allocation and trust computing for blockchain-enabled edge computing system. Computers & Security, 105, 102249.
12. Elgendy, I. A., Muthanna, A., Hammoudeh, M., Shaiba, H., Unal, D., & Khayyat, M. (2021). Advanced deep learning for resource allocation and security aware data offloading in industrial mobile edge computing. Big Data, 9(4), 265-278.
13. Cao, K., Hu, S., Shi, Y., Colombo, A. W., Karnouskos, S., & Li, X. (2021). A survey on edge and edge-cloud computing assisted cyber-physical systems. IEEE Transactions on Industrial Informatics, 17(11), 7806-7819.
14. Qiu, H., Zhu, K., Luong, N. C., Yi, C., Niyato, D., & Kim, D. I. (2022). Applications of auction and mechanism design in edge computing: A survey. IEEE Transactions on Cognitive Communications and Networking.
15. Li, X., Lan, X., Mirzaei, A., & Bonab, M. J. A. (2022). Reliability and robust resource allocation for Cache-enabled HetNets: QoS-aware mobile edge computing. Reliability Engineering & System Safety, 220, 108272.
16. Elgendy, I. A., Zhang, W., Tian, Y. C., & Li, K. (2019). Resource allocation and computation offloading with data security for mobile edge computing. Future Generation Computer Systems, 100, 531-541.
17. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2017, 5, 1–12.
18. Wang, S.; Zhang, X.; Zhang, Y.; Wang, L.; Yang, J.; Wang, W. A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications. IEEE Access 2017, 5, 6757–6779.
19. Sulieman, N. A., Ricciardi Celsi, L., Li, W., Zomaya, A., & Villari, M. (2022). Edge-Oriented Computing: A Survey on Research and Use Cases. Energies, 15(2), 452.
20. Li, Y.; Wang, S. An energy-aware edge server placement algorithm in mobile edge computing. In Proceedings of the 2018 IEEE International Conference on Edge Computing (EDGE), San Francisco, CA, USA, 2–7 July 2018; pp. 66–73.
21. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile edge computing: A survey. IEEE Internet Things J. 2017, 5, 450–465. [CrossRef]
22. Maia, A.M.; Ghamri-Doudane, Y.; Vieira, D.; de Castro, M.F. Optimized placement of scalable iot services in edge computing. In Proceedings of the 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Washington, DC, USA, 8–12 April 2019; pp. 189–197.
23. Xiao, K.; Gao, Z.; Wang, Q.; Yang, Y. A heuristic algorithm based on resource requirements forecasting for server placement in edge computing. In Proceedings of the 2018 IEEE/ACM Symposium on Edge Computing (SEC), Bellevue, WA, USA, 25–27 October 2018; pp. 354–355.
24. Personè, V.D.N.; Grassi, V. Architectural issues for self-adaptive service migration management in mobile edge computing scenarios. In Proceedings of the 2019 IEEE International Conference on Edge Computing (EDGE), Milan, Italy, 8–13 July 2019 ; pp. 27–29.
25. Fan, K.; Pan, Q.; Wang, J.; Liu, T.; Li, H.; Yang, Y. Cross-domain based data sharing scheme in cooperative edge computing. In Proceedings of the 2018 IEEE International Conference on Edge Computing (EDGE), San Francisco, CA, USA, 2–7 July 2018 ; pp. 87–92.
26. Caprolu, M.; Di Pietro, R.; Lombardi, F.; Raponi, S. Edge computing perspectives: Architectures, technologies, and open security issues. In Proceedings of the 2019 IEEE International Conference on Edge Computing (EDGE), Milan, Italy, 8–13 July 2019 ; pp. 116–123.
27. Alrowaily, M.; Lu, Z. Secure edge computing in iot systems: Review and case studies. In Proceedings of the 2018 IEEE/ACM Symposium on Edge Computing (SEC), Bellevue, WA, USA, 25–27 October 2018; pp. 440–444.
28. Giang, N.K.; Lea, R.; Blackstock, M.; Leung, V.C. Fog at the edge: Experiences building an edge computing platform. In Proceedings of the 2018 IEEE International Conference on Edge Computing (EDGE), San Francisco, CA, USA, 2–7 July 2018 ; pp. 9–16.
29. Loghin, D.; Ramapantulu, L.; Teo, Y.M. Towards analyzing the performance of hybrid edge-cloud processing. In Proceedings of the 2019 IEEE International Conference on Edge Computing (EDGE), Milan, Italy, 8–13 July 2019; pp. 87–94.
30. Ozcan, M.O.; Odaci, F.; Ari, I. Remote Debugging for Containerized Applications in Edge Computing Environments. In Proceedings of the 2019 IEEE International Conference on Edge Computing (EDGE), Milan, Italy, 8–13 July 2019; pp. 30–32.
31. Li, X.; Ding, R.; Liu, X.; Yan, W.; Xu, J.; Gao, H.; Zheng, X. Comec: Computation offloading for video-based heart rate detection app in mobile edge computing. In Proceedings of the 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), Melbourne, Australia, 11–13 December 2018 ; pp. 1038–1039.
32. Xing, H.; Liu, L.; Xu, J.; Nallanathan, A. Joint Task Assignment and Resource Allocation for D2D-Enabled Mobile-Edge Computing. IEEE Trans. Commun. 2019, 67, 4193–4207.
33. Nowak, D.; Mahn, T.; Al-Shatri, H.; Schwartz, A.; Klein, A. A Generalized Nash Game for Mobile Edge Computation Offloading. In Proceedings of the 6th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (Mobile Cloud), Bamberg, Germany, 26–29 March 2018.
34. Zhang, D., Piao, M., Zhang, T., Chen, C., & Zhu, H. (2020). New algorithm of multi-strategy channel allocation for edge computing. AEU-International Journal of Electronics and Communications, 126, 153372.
35. Vimal, S., Khari, M., Dey, N., Crespo, R. G., & Robinson, Y. H. (2020). Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT. Computer Communications, 151, 355-364.
36. A. Enayet, M. A. Razzaque, M. M. Hassan, A. Alamri, and G. Fortino, ‘‘A mobility-aware optimal resource allocation architecture for big data task execution on mobile cloud in smart cities,’’ IEEE Commun. Mag., vol. 56, no. 2, pp. 110–117, Feb. 2018.
37. J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, ‘‘Energyoptimized partial computation offloading in mobile-edge computing with genetic simulated-annealing-based particle swarm optimization,’’ IEEE Internet Things J., vol. 8, no. 5, pp. 3774–3785, Mar. 2021.
38. L. Kang, R.-S. Chen, W. Cao, Y.-C. Chen, and Y.-X. Hu, ‘‘Mechanism analysis of non-inertial particle swarm optimization for Internet of Things in edge computing,’’ Eng. Appl. Artif. Intell., vol. 94, Sep. 2020, Art. no. 103803.
39. L. N. T. Huynh, Q.-V. Pham, X.-Q. Pham, T. D. T. Nguyen, M. D. Hossain, and E.-N. Huh, ‘‘Efficient computation offloading in multi-tier multiaccess edge computing systems: A particle swarm optimization approach,’’ Appl. Sci., vol. 10, no. 1, p. 203, Dec. 2019.
40. Z. Chen, J. Hu, G. Min, and X. Chen, ‘‘Effective data placement for scientific workflows in mobile edge computing using genetic particle swarm optimization,’’ Concurrency Comput., Pract. Exp., vol. 33, no. 8, p. e5413, Apr. 2021.
41. S. Ma, S. Song, J. Zhao, L. Zhai, and F. Yang, ‘‘Joint network selection and service placement based on particle swarm optimization for multi-access edge computing,’’ IEEE Access, vol. 8, pp. 160871–160881, 2020.
42. S. Midya, A. Roy, K. Majumder, and S. Phadikar, ‘‘Multi-objective optimization technique for resource allocation and task scheduling in vehicular cloud architecture: A hybrid adaptive nature inspired approach,’’ J. Netw. Comput. Appl., vol. 103, pp. 58–84, Feb. 2018.
43. L. Liang, J. Xiao, Z. Ren, Z. Chen, and Y. Jia, ‘‘Particle swarm based service migration scheme in the edge computing environment,’’ IEEE Access, vol. 8, pp. 45596–45606, 2020.
44. S. Azimi, C. Pahl, and M. Shirvani, ‘‘Particle swarm optimization for performance management in multi-cluster IoT edge architectures,’’ in Proc. 10th Int. Conf. Cloud Comput. Services Sci., 2020, pp. 328–337.
45. Q. Wei, L. Liu, F. Wei, H. Ge, A. Feng, Y. Wang, and W. Li, ‘‘Computational offloading strategy based on dynamic particle swarm for multi-user mobile edge computing,’’ in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI), Dec. 2019, pp. 2890–2896.
46. Y. Zhang, Y. Liu, J. Zhou, J. Sun, and K. Li, ‘‘Slow-movement particle swarm optimization algorithms for scheduling security-critical tasks in resource-limited mobile edge computing,’’ Future Gener. Comput. Syst., vol. 112, pp. 148–161, Nov. 2020.
47. Z. Cheng, Q. Wang, Z. Li, and G. Rudolph, ‘‘Computation offloading and resource allocation for mobile edge computing,’’ in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI), Dec. 2019, pp. 2735–2740.
48. A. C. Baktir, A. Ozgovde, and C. Ersoy, ‘‘How can edge computing benefit from software-defined networking: A survey, use cases, and future directions,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2359–2391 , Jun. 2017.
49. عارفیان، زهرا و خیام باشی، محمدرضا،1400،مقایسه کاهش تاخیر در ارتباطات از نوع ماشین با استفاده از محاسبات مه و محاسبات ابری.
50. طهماسبی پویا، نیلوفر و صرام، مهدی آقا،1400،بهبود توازن بار در محاسبات مه با استفاده از الگوریتم Q-Learning،Fifth National Conference on ComputerEngineering،https://civilica.com/doc/1281556